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Introduction 
Standard statistical packages estimate variances by assuming that the sample was 

drawn from the population of interest through simple random sampling.  Under this 

assumption, the observed variance in the sample is a straightforward function of the 

population variance of the characteristic being estimated.  The sample variance can be 

used to establish confidence intervals around estimates and to compute the statistical 

significance of different analytic tests.   

Whenever a study design departs from simple random sampling, variance 

computations become complicated by the "design effect" (Kish, 1965).  In this paper, we 

describe the different methods of probability sampling and define the design effect.  

Next, we examine the different ways in which the sample designs of the Canadian 

Incidence Study (CIS) and the U.S. National Incidence Study (NIS) departed from simple 

random sampling and consider the impact of their resulting design effects.  Finally, we 

discuss what researchers should do to take the design effects into account when analyzing 

these data.  

 

Probability Sampling Methods 

Simple random sampling is one form of probability sampling.  Probability 

sampling methods are quite different from non-probability sampling methods such as 

convenience sampling, purposive sampling, or snowball sampling.  In probability 

sampling, a sample is selected through a random procedure that gives every member of 

the population a known probability of being selected.  

Simple random sampling (SRS) is a method of selecting a sample from a 

population that gives every member of the population an equal—and independent—
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chance of being selected.  We could draw a random sample by numbering all members of 

the population, generating a list of random numbers from a uniform distribution, and then 

using the random number list to identify the sampled members.  There are other methods 

that are equivalent (e.g., drawing names from a hat). 

In practice, survey researchers rarely use simple random sampling, instead 

preferring a different method of probability sampling because of its convenience, its cost-

efficiency, or because it has other important consequences that are desirable. 

Systematic sampling is sometimes used to approximate SRS because it is more 

convenient.  This method begins with a listing of the population.  A sampling interval (k) 

is identified that will produce the desired sample size (k=N/n, where N is the population 

size and n the desired sample size).  A single random number is generated in order to 

identify the first member of the sample and then every k-th member thereafter on the list 

is also selected into the sample. Notice that every member has an equal chance of being 

selected through this method, but the chance is not independent once the first sampled 

member has been identified.  For this reason, researchers take pains to sort the population 

listing ahead of time to ensure that different subgroups are spread evenly through the list.   

Stratified sampling is used when it is important for the sample to closely reflect 

specific characteristics of the population (e.g., in the proportion of members who live in 

urban vs. rural locations) or to ensure that certain population subgroups are included.  To 

draw a stratified sample, one first divides the population into homogenous subgroups 

(strata) and then draws  a separate sample from each stratum, using either a SRS or 

systematic sampling method. 
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Differential sampling refers to the use of different sampling probabilities when 

selecting the sample.  It is always used in conjunction with stratified sampling (although 

stratified sampling may be used without differential sampling rates).  Differential 

sampling, often called oversampling, is adopted when there are reasons that require 

larger numbers of certain subgroups than would be expected if equal sampling rates were 

used.  For instance, if one were interested in comparing preschool and school age 

children, but it is known that the population has only a small proportion of preschool 

children, then one may elect to oversample this subgroup so that the sample will include 

sufficient numbers to support the analyses that are of interest.  In order for results from 

the sample to be generalizable to the population, data that are collected using differential 

sampling must be weighted to adjust for the different selection probabilities. 

Cluster sampling entails randomly sampling groups ("clusters") of members and 

then either taking all members in the selected clusters into the sample, or drawing random 

samples of members from the selected clusters.  This strategy has two very important 

advantages for survey researchers: 

• it is not necessary to have a complete listing of all the members in all clusters 
beforehand—only members in selected clusters need to be listed; and 

• when clusters are geographic units, data collection can be extremely cost-
efficient—sampled cases will be concentrated in specific areas so recruitment 
and data collection can be targeted and travel costs minimized. 

These benefits make cluster sampling a very popular methodology in population surveys.  

When members are sampled within clusters, then the method is known as multistage 

cluster sampling, or sometimes simply multistage sampling.  Samples within clusters are 

often selected at different rates.  When this is the case, the data must be weighted and the 

analyst must use the case weights in order to draw accurate conclusions about the 
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population of interest. As will be seen below, besides adjusting for differential sampling 

rates, there are other reasons for assigning different weights to sample cases, such as to 

correct for losses due to nonresponse or to adjust the sample to known population 

parameters (known as poststratification adjustments).  Whatever the source of different 

case weights, they will have similar influences on the design effect. 

 

Design Effects 

No sample perfectly reflects its original population (Deming, 1950).  One source 

of error, the magnitude of a sample's error can be measured in probability samples, given 

by the standard error.  As noted earlier, computing the standard error of a sample estimate 

is straightforward for samples that are drawn by the SRS method.  But the SRS method is 

rarely used in survey research.  Any probability sampling method that departs from 

simple random sampling produces a design effect that complicates the computation of 

standard errors.  The design effect is a measure of the extent to which the variance (or 

standard error) of an estimate is changed by the departure from simple random sampling.  

Considering that a simple random sample has a design effect of 1, samples with design 

effects >1 will yield variances that are higher than comparable SRS samples, while those 

with design effects <1 will yield lower variances. 

The design effect summarizes the influences of all the factors that affect sampling 

variances—stratification, different case weights, and clustering. Generally, stratification 

tends to reduce the design effect while widely variable sample weights tend to increase it. 

In most cases, clustering increases the sample variances above the level that would be 

obtained with a simple random sample of the same size.  Members of a cluster are 
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typically more homogenous than independently selected population members would be.  

Their homogeneity is gauged by the intraclass correlation.  Higher intraclass correlations 

mean that the clustered sample will yield artificially low variances if it were treated like a 

SRS sample, so a different method of computing variances must be used in order to 

adjust them upward to accommodate the design effect.  

Design effects differ greatly from one survey to another, since there are important 

differences among sample designs. They can also vary among different items measured 

within a survey, and among specific population subgroups within a survey sample.   

 

The Sample Designs and Weighting Procedures of the CIS and the NIS 

Both the CIS and the NIS used complex multistage sample designs (Sedlak & 

Burke, 1996; Trocmé et al., 2001).  Both studies used stratified random sampling to select 

a sample of local child welfare service agencies and both subsequently sampled case 

investigations from within these agencies.  Because of these procedures, both designs 

introduced design effects into the data they gathered. 

Stratification and Selection of Primary Sampling Units (PSUs).  The overall 

designs of the CIS and NIS both aimed to identify a sample of PSUs that corresponded to 

the jurisdictions of local child welfare agencies. In Canada, there was an up-to-date 

listing of these agencies to use as the sampling universe.  For provinces or territories that 

were decentralized, the local child welfare agencies were defined as the PSUs; but in 

centralized provinces and territories, the PSUs were the district or regional offices.  In the 

U.S., there was no comprehensive listing of child welfare agencies that could be relied 

upon as completely up-to-date.  At the same time, local agencies nearly universally have 
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jurisdiction over a single county, so counties were defined as the PSUs and the sample 

was defined as those child welfare agencies that served sampled counties. 

The CIS sample design began with a list of 285 child welfare service agencies. 

These were stratified by province or territory.  A separate stratum was also created for 

nine aboriginal agencies that expressed an interest in participating in the study.  Each 

province or territory with fewer than 275,000 general population children was defined as 

a single stratum. Service areas in larger provinces/territories were additionally stratified 

by region and agency size. A total of fifty-one strata were defined through these 

procedures and one child welfare agency was selected from each stratum. Selection was 

random with four exceptions (three to avoid prohibitive travel costs in the Yukon and the 

Northwest Territories and one to accommodate participation by an additional aboriginal 

agency after samples were drawn). Five sites refused to participate and were replaced by 

a random selection of five additional sites from the remaining pool in the affected strata.   

As noted above, the jurisdictions of child welfare agencies, and their child 

protective services (CPS) units, are generally coterminus with county boundaries in the 

U.S.  Therefore, the primary sampling units (PSUs) for the NIS comprised a nationally 

representative sample of counties.  The universe consisted of 3,141 counties that existed 

at the time of the 1990 Census.  Counties with at least 2,800 children in school were 

treated as single-county PSUs, but those with fewer children were grouped together with 

similarly small adjacent counties to form multiple-county PSUs with at least 2,800 

school-age children in the grouping.  A PSU-level file was created containing 2,529 

records—2,123 single-county PSUs and 406 multiple-county PSUs.  Each PSU was 
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assigned a measure of size equal to the population ages 0 to 17 in 1990.1 The basic 

approach in the NIS-3 was to implicitly stratify the PSUs by sorting this listing according 

to the four main Census regions (Northeast, Southeast, Central, and West) and urbanicity 

(Large Metropolitan Statistical Area (MSA), Other MSA, and non-MSA).  When 

systematic random sampling is applied to a sorted listing like this,  the resulting sample is 

likely to include selections from all the implicit strata.  A sample of 40 PSUs was 

systematically selected from the sorted listing using probability proportional to size 

(PPS).2  This meant that PSUs with large child populations were substantially more likely 

to be selected into the sample than those with small child populations.  The final sample 

included 38 single-county PSUs and two of the small county groupings, each consisting 

of two counties.  All sampled agencies participated in the NIS, so data were collected 

from 42 local agencies. 

Case Samples. In each participating agency, the CIS sampled cases that were 

opened during the last 3 months of 1998 (October through December).  In most sites, all 

cases were included.  In Toronto, cases were sampled at different branch offices 

sequentially, with each office participating for a shorter time period.  All cases were 

screened to eliminate those where no maltreatment was alleged or suspected at any point 

(i.e., cases opened for service rather than for investigation) and then transformed to child 

records, with an individual record established for each investigated child.  The final 

                                                      
1 What follows is a simplified description of the NIS-3 sampling procedures.  The methodology was somewhat more complex than 

described here, since it also involved two certainty selections and included a procedure that maximized the overlap of the NIS-3 
county sample with the NIS-2 county sample. See Sedlak & Burke (1996).  This approach used was a generalization of the Keyfitz 
method described by Brick, Morganstein, and Wolters (1987). 

2 In PPS sampling, each PSU is given a measure of cumulative size by successively adding the number of children in school in the 
PSU to the number in school in all previous PSUs  in the listing.  The initial PSU is selected using a random number, and then 
systematic randomly sampling is used to select the remainder of the sample, with the skip interval couched in terms of number of 
children and applied to the cumulative totals. 
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sample included 7,672 children who were the subject of maltreatment investigations 

(Trocmé et al., 2001). 

The NIS was designed to go beyond the maltreated children who came to the 

attention of child welfare agencies, so in each county, a number of different sentinel 

agency categories are also sampled and community professionals in these agencies are 

asked to submit cases of suspected maltreatment to the study (Sedlak et al., 1997).  

However, this paper focuses on only the NIS cases that are collected at child welfare 

agencies, since that component directly parallels the cases targeted in the CIS design. In 

each NIS county, the CPS agency was asked to provide information about cases that were 

accepted for investigation during a three-month period in fall 1993 (September 5 through 

December 4).  The objective was to obtain an overall sample of approximately 4,000 

family-level case investigations while minimizing the variability of the resulting weights.  

Fatality cases were included with certainty, while the remaining cases were listed 

according to their date of report and a sample was selected via systematic random 

sampling.  By making this distinction, the NIS introduced differences in case sampling 

rates that contributed to the design effect.  However, the NIS also incorporated a strategy 

for equalizing the weights on other cases insofar as possible in order to minimize the 

design effect.  Weights can be kept more nearly uniform by selecting a "self-weighting" 

sample—that is, by setting the within-agency case sampling rate proportional to the PSU 

selection rate such that the product of these two rates is the same, or nearly the same, 

across all PSUs.  As in the CIS, it was also necessary in the NIS to transform the family-

level records that reflect case investigations into child-level records.  When this 
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transformation was completed, the NIS case sample included records on 5,321 children 

who had been subjects of maltreatment investigations.3 

Weighting Procedures.  All duplicate reports were removed from the CIS case 

samples, and a two-step weighting procedure was applied (Trocmé et al., 2001).  Cases 

were first annualized in order to permit the 3-month samples to represent the children 

who were investigated during the full calendar year.  Annualization weights were defined 

on a site-by-site basis as the inverse of the number of completed cases out of the total 

number of cases opened over the year.  The strategy of assigning weights to sample cases 

so that their weighted distribution conforms to known characteristics of the target 

population is called "post-stratification." Here, the weights ensured, on a site-by-site 

basis, that the weighted sample total would equal the known population total (the annual 

total of cases).  In doing this, the “annualization” weights simultaneously annualized the 

study data and corrected for the missing cases (i.e., adjusted for sample nonresponse).4   

Following this, regionalization weights were applied.  Regionalization weights 

were also computed on a site-by-site basis, based on the proportion of the child 

population in the sampled site relative to the size of the child population in the stratum 

(province, territory, or region). Again, this is another variant of a post-stratification 

strategy.  In this case, the target population itself (i.e., all child-investigations in the 

stratum) is not known, but it was assumed that the general child population at both site 

and stratum levels can be used as proxy. This weight is essential to ensure that each case 

represents the correct number of children in their region.   

                                                      
3 Users will note that there are 7,263 child-level records in the NIS3 CPS-only database, but 1,942 of these were children who were 

not subjects of investigation (they merely resided in households with children whose maltreatment was investigated). 
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In the NIS, there were four components to the final case weights—a PSU weight, 

a case weight, a nonresponse adjustment weight, and an annualization weight (Sedlak et 

al., 1997).  The first two multipliers adjusted for the probability of selecting the PSU and 

the probability of selecting the case within the agency, respectively (i.e., the weights were 

computed as the inverse of these probabilities). As noted above, the NIS sample was 

designed to minimize the design effect by ensuring that, after the combination of the PSU 

and case-level components, cases would have relatively similar weights.   

The third weighting step in the NIS was to apply two forms of adjustment for data 

loss.  One was a standard nonresponse adjustment multiplier that compensated for 

missing cases.  It was computed on an agency-by-agency basis, permitting the completed 

cases to represent the original full sample of cases at the agency.  Where the 

substantiation status of the missing cases was known, nonresponse adjustments were 

defined separately for cases in the different status categories (i.e., completed 

substantiated cases were expanded to represent the all sampled substantiated cases, while 

completed unfounded cases represented all unfounded cases sampled at the agency).  The 

NIS also employed a second adjustment for data loss in order to correct for the fact that 

some agencies had provided incomplete case listings during the data period (i.e., the case 

samples had been selected from deficient frames).  Note that both of these adjustments 

for data loss introduced differences in final case weights, which in turn contributed to the 

design effect in the NIS. 

Annualization weights in the NIS were identified through a separate study that 

obtained a full year of substantiated case data from all county agencies in the NIS sample.  

                                                                                                                                                              
4 Response rates were computed by comparing the total number of cases opened during the data period to the number of data forms 

received.  Not all sites could provide the count of case openings during the period, but among those that could do so, the overall 
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These data were unduplicated for the 3 calendar months corresponding to the NIS data 

period and for the full year.  Because it was known that there is a substantial decrease in 

reports from schools during the summer months, separate annualization multipliers were 

computed for cases reported by schools and for those reported by other sources.  Sample 

cases from the NIS main study were weighted by the annualization multiplier associated 

with their reporting source.  On the one hand, the fact that the NIS annualization weights 

were computed and applied at the national level (rather than the PSU level) avoided 

introducing differences in case weights, which helped to minimize the design effect; on 

the other hand, the differentiation of separate annualization multipliers for schools and 

for other reporting sources raised the NIS design effect.  

Unduplication. It should be noted that the units of measurement in the two 

studies differed because of differences in the extent to which duplicate reports on the 

same child could be identified and taken into account.  While this does not affect design 

effects per se, the issue does have bearing on the comparability across the two studies 

even when parallel data and definitions are taken into account.  Also, it is useful to bear 

in mind that while the design effect pertains to sampling error in surveys, one must also 

be aware of nonsampling error when analyzing and reporting survey results.   

As noted above, duplicate records in the CIS concerning the same child were 

removed from the samples—so the samples were transformed to child-level units before 

any weighting was undertaken.  Also, regionalization multipliers were computed using 

child population data, so the second-stage multiplier was also at the child-level.  

However, because it was not possible to identify duplicate investigations concerning a 

given child in the annual investigation statistics that were used to compute the 

                                                                                                                                                              
response rate was 90 percent, ranging from 75 to 100 percent across the sites. 
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annualization weights, these first-stage multipliers were couched in terms of child-

investigations.  As a result, the CIS is said to provide estimates of child-investigations, 

rather than estimates of children (Trocmé et al, 2001).   

In the NIS, duplicate cases within the agency frame were identified to the extent 

possible and omitted from the sample.  Following that, all duplicate records in the sample 

were identified, the weights on the individual duplicate records were examined, and a 

unified weight was assigned that took account of the child's multiple selections into the 

sample.  Annualization weights were, as mentioned earlier, computed on the basis of 

unduplicated child data, and these were only applied after multiple investigation records 

on a given child were unified.  The NIS provides unduplicated estimates of the number of 

maltreated children (Sedlak et al., 1997). 

 

Estimation of Design Effects in the CIS and the NIS 

Method.  This section discusses the estimation of sampling errors and design 

effects and compares estimates from the CIS and the NIS.  The sampling for both surveys 

was designed so that standard errors could be estimated using the “ultimate cluster” 

method (Hansen, Hurwitz, and Madow, 1953).  The ultimate cluster is a grouping of 

sampled cases for variance estimation purposes.   The approximate ultimate clusters for 

both surveys are the PSUs, that is, child welfare service areas in the CIS and counties in 

the NIS.  In general, the use of ultimate clusters for sampling error estimation reflects the 

gains in precision from stratification and the loss in precision from the clustering of cases 

within PSUs. 
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Sampling errors for descriptive statistics from both surveys are computed by the 

jackknife method (Rust, 1985).  To use this method,  the noncertainty PSUs are grouped 

into pairs (or triplets), and within the certainty PSUs the secondary stage units are 

grouped into pairs.  These pairings are termed variance estimation strata.  The 

construction of variance estimation strata is discussed in more detail in the technical 

survey reports.  The idea is to form pairs (or groups) of PSUs that were sampled from 

strata having similar characteristics.  In total, 25 variance strata were constructed for CIS 

and 21 variance strata for NIS.   Once the variance strata are defined, estimation of 

sampling errors can proceed using Westat’s WesVar software to prepare replicate 

weights and generate jackknife estimates. 

The design effect can be estimated by comparing the achieved variance after 

considering the complex design with the variance computed by ignoring the design, that 

is, using the data drawn from the design but treating those data as if they came from a 

simple random sample.  This method of estimating design effect works well if the design 

is self-weighting (i.e., all cases receive equal weight).   However, neither the CIS nor the 

NIS is self-weighting. As a result, this approximation of the variance of a simple random 

sample design contains the positive effect of stratification, but ignores the effect of 

clustering.  Since the effect of clustering tends to dominate the difference between the 

design variance and the simple random sample variance, the approximation yields 

estimates of the design effects that are higher than they would be if the cluster could be 

taken into account.  Nevertheless, the estimates of design effects that are generated 

through this approximation are useful in evaluating the designs of the two surveys.   

Estimated Design Effects in the CIS and the NIS.   Table 1 shows the standard errors 

and design effects for estimates of percentages of substantiated/suspected child-investigations (in 
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the CIS) and of substantiated/indicated children (in the NIS) among all those investigated in each 

survey.  The table also shows the estimates for child-investigations (or children) that were 

substantiated/suspected (or substantiated/indicated)  for different types of maltreatment and gives 

their percentages among all substantiated/indicated (substantiated/suspected) cases.  The CIS 

sample contained 5,143 substantiated/suspected child-investigations.  The weighted percentage of 

substantiated cases among cases subject to investigation is 67 percent, the standard error of this 

estimated percentage is 1.7 percent, and the design effect is 9.78.  In contrast, the NIS sample 

contained 1,917 substantiated/indicated children.  This corresponds to a weighted percentage of 

37 percent of the cases subject to investigation, the standard error of this estimated percentage is 

2.5 percent, and the design effect is higher at 13.7.  The different percentages of substantiated 

cases reflect agency differences in practices during the intake and investigation processes. By 

type of indicated cases, however, the design effects of the CIS estimates are quite variable, 

ranging from 1.7 to 18.7.  In contrast, the design effects of the NIS estimates are more consistent 

ranging between 1.47 and 3.26 (see Figure 1). 

Table 1.  Estimated percentages, standard errors, and design effects from CIS and NIS 

 
Investigation 

Sample 
Size 

Weighted 
total 

Weighted 
Percentage 

Standard 
error 

Design 
effect 

CIS Substantiated/suspected    5,143 90,869 67 1.7  9.8
     Physical abuse 1,641 29,374 32 2.8 18.7
     Physical neglect 572 9,554 11 0.6  1.7
     Sexual abuse 553 9,937 11 1.0 5.6
NIS Substantiated/indicated 1,917 875,872 37 2.5 13.7
     Physical abuse 506 231,672 27 1.8 3.3
     Physical neglect 921 425,550 49 1.4 1.5
     Sexual abuse 250 110,250 13 1.4 3.2
 

Estimated Design Effects and Effective Sample Sizes for Subgroups.  Table 2 

shows the estimated percentages of males and females by type of indicated cases and the 

standard errors, design effects, and effective sample sizes of the estimates in CIS and 

NIS.  One way to use the design effects is to divide the actual sample size by the design 

 15



effect to achieve an “effective” sample size, that is, the size of a simple random sample 

that would have produced the same precision as the design sample size.   For example, 

within cases with substantiated/suspected sexual abuse, the CIS sample included 147 

males and 405 females with this label.  The design effect for the estimated percentage 

was 2.86 for both subgroups, so the effective sample sizes were about 51 males and 142 

females.  The NIS sample included 54 males and 196 females with 

substantiated/indicated sexual abuse.  The design effects for the estimated percentages 

were 1.2 for both, so the effective sample sizes were 45 males and 163 females.  This 

shows that the effective sample sizes for these subgroups were comparable in the two 

surveys.  Remember that the estimates of design effects are approximate.  Design effects 

of less than one typically are associated with small subgroup sizes and with 

characteristics that are thinly distributed over the entire sample, that is, that are not 

clustered.  In general, because of the sampling error, these estimates should be considered 

as being near 1.0, and they have been set to 1.0 in the tables here. 

Table 2.  Estimated percentages of males and females by type of indicated abuse and 
neglect, standard errors, design effects and effective sample size, CIS and NIS 
 

Substantiated/ 
Indicated/ Suspected 

cases 

 
Gender 

Weighted 
estimate 

Weighted 
Percentage

Standard 
error 

Design 
effect 

Sample 
size 

Effective 
sample size

CIS Physical abuse Females 13,156 45 1.1 1.0 730 730 
 Male 16,189 55 1.1 1.0 906 906 
        Physical Neglect Females 4,967 52 3.8 3.3 284 86 
 Male 4,583 48 3.8 3.3 287 87 
       Sexual abuse Females 7,043 71 3.3 2.9 405 142 
 Male 2,834 29 3.3 2.9 147 51. 
NIS Physical abuse Females 117,024 51 3.3 2.2 249 113 
 Male 114,648 49 3.3 2.2 257 117 
        Physical Neglect Females 215,068 51 2.0 1.4 475 335 
 Male 209,321 49 2.0 1.4 445 318 
        Sexual abuse Females 87,511 79 2.8 1.2 196 163 
 Male 22,739 21 2.8 1.2 54 45 
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Effects of Clustering on Design Effects and Effective Sample Sizes. The effects of 

clustering on estimates of standard errors and design effects are less intuitive.  In general, the 

tendency is for standard errors to decrease as the sample size increases.  For complex surveys 

such as CIS and NIS, this trend is not linear.  The fact that the sample is clustered causes the large 

clusters to have relatively larger standard errors than can be accounted for by the sample size 

alone (because the design effect due to intraclass correlation is magnified in large clusters).  Table 

3 shows the estimated percentages of racial ethnic groups by type of substantiated abuse and 

neglect, the standard errors, design effects and effective sample sizes from the CIS and the NIS.  

A few variables have unusually large design effects.  For example, in the CIS the design effect 

percentage of Aboriginal cases with physical neglect is 32.4.  In the NIS, the design effect of 

American Indians with physical neglect is 33.7.  These large values indicate homogeneity within 

clusters.  Figure 2 shows the effective sample size for indicated cases by race in CIS and NIS.  

The small sample size in both surveys suggests caution for analyses with these small subgroups. 
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Table 3.  Estimated percentages of racial ethnic groups by type of indicated abuse and 
neglect, standard errors, design effects and effective sample sizes, CIS and NIS 
 
Substantiated/ 
Indicated/ Sus-
pected cases 

 
Race 

Weighted 
estimate 

Weighted 
Percentage

Standard 
error 

Design 
effect 

Sample 
size 

Effective 
sample size

CIS  P. Abuse White 21,030 72 3.4 9.0 849 94 
 Aboriginal 2,609 9 2.4 12.1 127 11 
 Asian Pacific 834 3 0.3 1.0 91 91 
 Latin American 150 1 0.3 2.4 13 5 
 Black 742 3 0.3 1.0 64 64 
        P. Neglect White 5,129 54 11.6 30.9 209 7 
 Aboriginal 2,055 22 9.8 32.4 82 3 
 Asian Pacific 51 1 0.1 1.0 8 8 
 Latin American 308 3 3.0 16.3 6 0 
 Black 99 1 0.1 1.0 8 8 
        S. Abuse White 7,040 71 4.7 6.0 254 42 
 Aboriginal 728 7 3.6 10.7 42 4 
 Asian Pacific 105 1 0.4 1.0 6 6 
 Latin American 12 0 0.0 1.0 1 1 
 Black 206 2 0.8 1.6 12 7 
NIS  P. Abuse White 123,649 53 4.3 3.8 276 72 
 American Indian 11,750 5 3.4 12.3 17 1 
 Asian Pacific 4,303 2 0.8 1.7 10 6 
 Hispanic 36,413 16 2.6 2.6 79 30 
 Black 42,149 18 3.1 3.4 96 29 
        P. Neglect White 205,635 48 4.7 8.2 454 56 
 American Indian 16,533 4 3.7 33.7 20 1 
 Asian Pacific 2,691 1 0.4 2.1 9 4 
 Hispanic 72,681 17 2.9 5.4 162 30 
 Black 102,193 24 3.8 7.5 231 31 
         S. Abuse White 77,228 70 4.9 2.9 165 57 
 American Indian 131 0 0.1 1.0 3 3 
 Asian Pacific 671 1 0.5 1.0 2 2 
 Hispanic 11,503 10 2.7 2.0 31 15 
 Black 9,166 8 3 3.0 26 9 

 

Effects of Weight Variation on Design Effects.  Another source of variation in 

design effect estimates is variation in the sampling weights.  Design effects are increased 

when the sampling weights vary from self-weighting.  The design effects decrease as the 

effectiveness of stratification increases.  A method to estimate the effect of variation in 

the sampling weights on the design effect is to estimate an inflation factor defined as one 
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plus the coefficient of variation of the final weight squared (Kish, 1965).  This factor 

equals one for a self-weighting sample.  In a non-self-weighting sample, it is the factor by 

which the variance of sample statistics is increased due to unequal sample weights.  This 

estimate is indicative of the amount of variance due to variation in the weights.   For the 

CIS, the inflation factor is quite high at 2.34.  Note that this arises because the CIS did 

not use a PPS approach. This inflation factor means that the variance of estimates was 

increased by about 134 percent due to variations in the weights and the standard error 

was increased by about 53 percent (square root of 2.34).   For the NIS, the sampling 

weights were less variable because of the PPS design.  The inflation factor due to unequal 

weights is increased by a smaller factor of 1.44.   In other words, the variance of the NIS 

estimates was increased by about 44 percent due to variations in the weights and the 

standard error was increased by 20 percent.      

 

Analyzing Data from Complex Surveys 

Because of the complex designs of these surveys, analysts must use special 

measures when analyzing the CIS or the NIS data.  Two measures of central 

importance—using the weighted data and using a statistical software package that is 

equipped to deal appropriately with the surveys’ design effects.   

Researchers should always analyze the data using the weight that has been 

assigned to each case.  This weight is the final product of a number of different weights, 

as described above.  Distributions, totals, means, and percentages will be  biased if they 

are based on unweighted data.  Even correlations and models can be seriously in error if 

they do not take account of the design features that are encoded in the survey weights.  
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Consider, for instance, that fatalities were oversampled (i.e., taken with certainty) 

in the NIS.  As a result, their percentage among the cases in their agencies is much 

smaller than their percentage among the cases in the NIS sample.  Their percentage based 

on unweighted data would be seriously misleading, but their percentage based on the 

weighted data will accurately reflect the original agency case distribution.  

Although other distortions might be less obvious, the failure to adjust for case 

weight differences will mean that the findings cannot be generalized to the national 

population of maltreated children, or child-investigations.  That is, while an unweighted 

analysis can describe the sample cases per se, the results will have no external validity 

beyond this sample unless the analysis is conducted with weighted data. Statisticians 

concur that all the critical sample design factors must be taken into account in order to 

obtain meaningful results, and factors about sample representation are conveyed in the 

survey weights. 

In computing variances and assessing the significance of different tests, standard 

statistical packages such as SAS or SPSS, assume that the data derive from simple 

random samples with the elements of the sample statistically independent of each other.  

However, this paper has shown that design effects pervade complex survey data—which 

typically means that study variances are larger than they would be if the data were 

selected by a simple random sample—so standard statistical packages cannot be used 

because they lead to biased variance estimates (Brogan, 1998; Korn & Graubard, 1995).   

However, as described above, both the CIS and the NIS designs departed from 

simple random samples in a number of respects, having introduced variability into case 
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weights and employing multi-stage sample designs that involved clustering of CPS cases 

within agencies and, in the CIS, within provinces, territories, or regions.   

In order for significance tests to yield meaningful results in this context, users 

must take special measures to compute unbiased variance estimates (Lee, Forthofer, & 

Lorimor, 1989). Otherwise, findings will be distorted by the misspecification effect 

(Skinner, 1989). Also, as seen in the previous section, the magnitude of the design effect 

varies with the specific analysis, meaning that there is no simple "fix" for it in the context 

of standard statistical packages.   

There are two principal ways to compute accurate variances and significance tests 

for data from complex sample designs.  One approach is the Taylor Series linearization 

(Lavange, Stearns, Lafata, Koch, and Shah, 1996),5 and the other relies on replication 

procedures (Brick, Morganstein, & Valliant, 2000;  Rust & Rao, 1996).  The estimates in 

the initial CIS report were produced using the Taylor Series linearization, but subsequent 

analyses of the CIS database, and all work with the NIS database, have used the 

replication method as implemented in the software package, WesVar (Westat, 2000). 

The Taylor series approximation and the repeated replication methods do not 

produce identical estimates of sampling error, but the differences in most cases are slight 

(Kish and Frankel, 1970; Kish and Frankel, 1974). The important practical implication is 

that a separate Taylor series approximation must be separately generated for each 

statistic, whereas once replicate weights have been developed for a survey database, the 

repeated replication approach employs the same method for all statistics estimated from 

the database.  Another advantage of replication methods is that they can be used to 
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incorporate different adjustments (e.g., nonresponse adjustment, poststratification 

adjustments) into the estimates of variance so that the variance associated with these 

adjustments can be taken into account as well (Valliant, 1993). 

The basic idea of replication methods is that a number of subsamples, or 

replicates, are selected from main sample, each of which is used to develop the estimate 

of interest, and then the variability among these various replicate estimates is used to 

compute the standard error of the overall sample estimate. 

Analysts should be aware that the case weights and replicate weights are already 

developed and provided in the NIS database.  In the CIS database, only the case weights 

are included.  However, replicate weights for the CIS data can easily be developed within 

WesVar itself, by specifying the variance strata and the variance units.  Some examples 

to illustrate the user-friendly nature WesVar screens are given here in Figures 3 through 

6.  Figure 3 shows the NIS data imported into WesVar.  As can be seen, the software now 

recognizes the replicate weights and will automatically apply them when computing 

variances and calculating the significance of models, parameters, and statistical tests.  

Figure 4 shows that it is possible to use WesVar to create replicate weights, which will be 

necessary when analyzing the CIS data, since they are not provided on the public use 

files.  Figure 5 shows how, once the data have been imported into WesVar, it is very easy 

to request tables.  It should be noted that it is also possible to compute correlations and to 

fit regression and logistic models in WesVar.  Finally, Figure 6 shows the output from a 

simple WesVar table request.  This was used in completing the NIS section in Table 2, 

given earlier. 

                                                                                                                                                              
5 This method is available in specialized analytic software packages such as SUDAAN® (Research Triangle Institute, 

www.rti.org/patents/sudaan/survey_research.html), Stata (Stata Statistical Software, www.stata.com), and Statistics Canada's 
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Further information about WesVar can be found at www.westat.com, and step-by-

step sample analyses using WesVar with the NIS-3 data are given in the NIS–3 Public 

Use Files Manual. 

                                                                                                                                                              
Generalized Estimation System (GES, www.statcan.ca/english/IPS/Data/10H0035LHB.htm). 
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Figure 1.  Design effects for CIS and NIS estimated percentages 
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Figure 2: Effective sample sizes for CIS and NIS by racial ethnic groups and type of maltreatment 
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Figure 3. WesVar data file screen, showing imported NIS-3 database 

 

 

Figure 4. WesVar screen for creating replicate weights 
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Figure 5. WesVar table request screen 

 

Figure 6. WesVar output screen providing requested table 
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